Reifegradmodell & RoadmapMaturity Model & Roadmap
Wie entwickelt sich die virtuelle Organisation über die Zeit?How does the virtual organization evolve over time?
Die zeitliche Dimension von VCOM: Ein 5-Phasen-Reifemodell mit Bateson Learning Levels, eine 3-Phasen-Operational-Roadmap (Architect → Trainer → Orchestrator), evidenzbasierte Transitionskriterien und der dreiskalige VCOM Continuous Improvement Cycle. The temporal dimension of VCOM: a 5-phase maturity model mapped to Bateson Learning Levels, a 3-phase operational roadmap (Architect → Trainer → Orchestrator), evidence-based transition criteria, and the three-timescale VCOM Continuous Improvement Cycle.
Zusammenfassung
Die KI-native Organisation wird nicht über Nacht gebaut. Diese Dimension definiert ein 5-Phasen-Reifemodell (Foundation → Structured Assistance → Managed Autonomy → Adaptive Organization → Enterprise), gemappt auf Batesons (1972) Lernniveau-Hierarchie, eine 3-Phasen-Operational-Roadmap (Architect → Trainer → Orchestrator) für die Evolution der Principal-Rolle, und den VCOM Continuous Improvement Cycle mit drei Zeitskalen (operativ, taktisch, strategisch).
Zwei komplementäre Modelle arbeiten zusammen: Das Reifemodell (diagnostisch) beschreibt, wie die Organisation auf jeder Stufe aussieht. Die Roadmap (präskriptiv) beschreibt, was der Principal auf jeder Stufe tut. Verwechslung dieser beiden ist eine dokumentierte Ursache für Implementierungsfehler.
Kontext im VCOM-Framework
Das Reifegradmodell integriert alle anderen Dimensionen: Jede Reifephase impliziert ein Mindestmaß an Entwicklung in Organisation, Governance, Prozessen, Wissen, Technologie und Performance-Messung. Es ist die zeitliche Dimension von VCOM. Zwei häufige Fehlermodi motivieren diese Dimension: Premature Autonomy (L3–L4-Agenten ohne Governance-Fundament) und Governance Rigidity (Phase-1-Kontrollen bei Phase-3-Agentenpopulationen).
Summary
An AI-native organization is not built overnight. This dimension defines a 5-phase maturity model (Foundation → Structured Assistance → Managed Autonomy → Adaptive Organization → Enterprise), mapped to Bateson's (1972) learning level hierarchy, a 3-phase operational roadmap (Architect → Trainer → Orchestrator) for the principal's evolving role, and the VCOM Continuous Improvement Cycle with three timescales (operational, tactical, strategic).
Two complementary models work together: The maturity model (diagnostic) describes what the organization looks like at each level. The roadmap (prescriptive) describes what the principal does at each stage. Confusion between these two is a documented source of implementation failure.
Context within the VCOM Framework
The maturity model integrates all other dimensions: each phase implies a minimum level of development in organization, governance, processes, knowledge, technology, and performance measurement. It is the temporal dimension of VCOM. Two common failure modes motivate this dimension: Premature Autonomy (deploying L3–L4 agents without governance foundations) and Governance Rigidity (maintaining Phase 1 controls at Phase 3 agent populations).
Sodexus befindet sich operativ in Phase 2 (Structured Assistance) mit Elementen von Phase 3 (Managed Autonomy). Der Principal nutzt die Roadmap als Selbstbewertungs-Tool: Wo stehen wir pro Dimension? Welche Transitionskriterien müssen erfüllt sein, bevor wir die nächste Phase erreichen?
Sodexus is operationally at Phase 2 (Structured Assistance) with elements of Phase 3 (Managed Autonomy). The principal uses the roadmap as a self-assessment tool: where do we stand per dimension? What transition criteria must be met before reaching the next phase?
Das Reifemodell zeigt den Weg: Heute steuern Sie vielleicht jeden Agent-Output manuell (Phase 1–2). Mit zunehmender Reife verschiebt sich Ihre Rolle zum Orchestrator (Phase 3–4) und schließlich zum strategischen Architekten (Phase 5). Jede Phase ist stabil, bevor die nächste beginnt.
The maturity model shows the path: today you may manually review every agent output (Phase 1–2). As maturity increases, your role shifts to orchestrator (Phase 3–4) and eventually strategic architect (Phase 5). Each phase stabilizes before the next begins.
Die Phasen-Struktur schützt vor Überautomatisierung: Governance führt immer vor Autonomie. Kein Agent bekommt mehr Freiheiten, als die Governance-Systeme absichern können. Qualität und Sicherheit haben Vorrang vor Geschwindigkeit.
The phased structure protects against over-automation: governance always leads autonomy. No agent receives more freedom than governance systems can assure. Quality and security take priority over speed.
Das 5-Phasen-Reifemodell
Jede Phase entspricht einem qualitativ unterschiedlichen Typ adaptiver Kapazität, fundiert in Batesons (1972) Hierarchie von Lerntypen:
Phase 1: Foundation (Bateson Level 0)
KI als persönliches Produktivitäts-Tool. Einzelne Agenten bei L0–L1 produzieren fixe Antworten ohne erfahrungsbasierte Modifikation. Keine Inter-Agenten-Koordination. Principal reviewt alle Outputs.
Transitionskriterien: 3+ wiederkehrende Tasks identifiziert; >30% Principal-Zeit auf automatisierbare Tasks.
Phase 2: Structured Assistance (Bateson Level I)
Agenten passen operative Parameter basierend auf Erfahrung an, innerhalb fixer Workflow-Strukturen. 5–10 Agenten bei L1–L2. Governance führt Standing und Prohibited Policies über einen Basis-GaaS-Layer ein.
Transitionskriterien: 5+ Workflows bei L2; Goal Accuracy >80%; sinkende Intervention Rate über 3+ Monate.
Phase 3: Managed Autonomy (Level I → II)
Agenten beginnen, Workflow-Strukturen zu verändern, nicht nur Parameter. 10–30 Agenten bei L2–L3. Volle GaaS Policy-Taxonomie, Knowledge Graph mit episodischer und semantischer Schicht, RepuNet Peer-Qualitätssicherung.
Transitionskriterien: 20+ Workflows bei L2–L3; <5% Intervention Rate; Trust Scores treiben Autonomie; Lifecycle Management operativ.
Phase 4: Adaptive Organization (Bateson Level II)
Agenten innovieren systematisch, transferieren Fähigkeiten über Domänen und schaffen neue Fähigkeiten ohne Principal-Spezifikation. 30–100+ Agenten bei L3–L4. Dynamische Team-Formation, strategische Agenten (S4), interne Marktmechanismen.
Phase 5: Enterprise / AI-Native (Level II → III)
Nähert sich der Grenze zwischen Learning II und III, wo die Organisation beginnt, ihr eigenes Betriebsmodell zu transformieren. Aspirational — Stand 2026 von keiner bekannten Organisation erreicht.
3-Phasen-Operational-Roadmap
- Phase I: The Architect (Monate 1–3): System designen. VSM-Struktur aufbauen. LangGraph-Backbone und Knowledge Graph. L2-Agenten für Kernprozesse. Basis-GaaS. Deliverables: Organisationsverfassung, 3–5 Produktions-Workflows, Cockpit mit Basis-Observability.
- Phase II: The Trainer (Monate 4–6): Feedback-Schleifen und Kalibrierungstests. System-Prompt-Verfeinerung. Spezialisten-Cluster. KPI-Framework und Trust Scores. Deliverables: Performance-Baselines, Trust-Score-getriebene Autonomie operativ, Knowledge Graph durch Gardener gewartet.
- Phase III: The Orchestrator (Monat 6+): L3/L4-Autonomie. Marktmechanismen. Strategische Agenten (S4). >80% Principal-Zeit auf S4/S5-Aktivitäten. Deliverables: Agenten bei L3+ für Routinebetrieb, strategische Agenten generieren umsetzbare Insights.
Failure Modes bei Phasen-Transitionen
| Transition | Fehlermodus | Symptom | Prävention |
|---|---|---|---|
| 1 → 2 | Premature Workflow-Formalisierung | Starre, minderwertige Prozesse | ≥ 10 manuelle Ausführungen vor Formalisierung |
| 2 → 3 | Governance Gap | L3-Agenten ohne adäquate GaaS-Abdeckung | 100% Policy-Abdeckung für Agent-Domäne vor L3 |
| 2 → 3 | Knowledge-Graph-Vernachlässigung | Kein geteiltes Organisationsgedächtnis | Knowledge-Graph-Health in Transitionskriterien |
| 3 → 4 | Unzureichende Attribution | Multi-Agent-Workflows ohne Outcome-Attribution | Stage-based Attribution vor Phase 4 |
| 3 → 4 | Überabhängigkeit vom Principal | Principal bleibt primärer QA-Mechanismus | Funktionales RepuNet und Peer Review vor Phase 4 |
Phase Regression & Recovery
Reife-Regression ist eine normale organisationale Reaktion auf Störungen, kein Versagen. Drei Typen:
- Model-Change Regression: Großes Modell-Upgrade verursacht Verhaltens-Drift. Organisation regrediert temporär. Recovery: Autonomie auf L1–L2 reduzieren, Kalibrierungstests wiederholen, Baselines neu erstellen. 1–4 Wochen.
- Governance-Failure Regression: Signifikanter Governance-Breach. Recovery: Alle Agenten sofort auf L1 reduzieren, Audit durchführen, Governance-Lücke schließen. 2–6 Wochen.
- Market-Shift Regression: Fundamentale Umfeldänderung invalidiert Workflows und Strategien. Recovery: Autonomie nicht reduzieren. Domänen-Strategien aktualisieren, Workflows revidieren, Agenten auf neuem Kontext re-trainieren.
VCOM Continuous Improvement Cycle
Vereint cross-dimensionale Feedback-Loops in einer dreiskaligen Architektur (Argyris, 1991):
- Operativer Loop (Per-Task): Automatisch, <5% Overhead. Assign → Execute → Measure → Evaluate → Record → Feedback.
- Taktischer Loop (Zweimal monatlich): Single-Loop Learning. Review → Analyze → Diagnose → Plan → Adapt → Capture. Hier wird das Empirische Lernprotokoll (Dim 09) am häufigsten invokiert.
- Strategischer Loop (Vierteljährlich): Double-Loop Learning. Erfordert Principal-Teilnahme. Environmental Scan → Portfolio Review → Strategy Adjustment → Maturity Assessment → Constitution Review → Roadmap Update.
Autonomer Operationsmodus
Bei Abwesenheit des Principals:
- Strategischer Loop: Suspendiert. Keine Strategieänderungen. Environmental Scanning läuft weiter; Ergebnisse für Rückkehr akkumuliert.
- Taktischer Loop: Reduzierter Scope. Prozessverbesserungen innerhalb bestehender Strukturen erlaubt. Budget-Reallokation auf ±10% beschränkt.
- Operativer Loop: Normalbetrieb innerhalb bestehender Einschränkungen.
Conservation Protocol (ab Tag 7 / Gelb→Orange): Risikoappetit eine Stufe konservativer, Explorations-Budgets −50%, alle L3+-Aktionen erfordern Manager-Bestätigung.
Self-Reflection Checkpoints (S3 Common Sense Framework)
Meta-Level-Organisationsgesundheits-Assessment über zehn diagnostische Dimensionen (Bockelbrink et al., 2022):
- Purpose Clarity — geteiltes Verständnis des Organisationszwecks
- Strategy Coherence — Initiativen aligned mit Strategic Themes
- Value Delivery — Outputs dienen gesteckten Zielen
- Sense-and-Respond — Spannungen erkannt und effektiv geroutet
- Experimentation Culture — Empirisches Lernprotokoll genutzt
- Autonomy & Accountability — angemessene Level mit Verantwortung
- Collaboration Effectiveness — Cross-Agent-Workflows funktionieren
- Learning Orientation — neues Wissen erfasst und angewandt
- Cultural Coherence — Verhaltensnormen konsistent mit Verfassung
- Shared Mental Models — konsistente Domänenannahmen über Agenten
Jede Dimension 0.0–1.0 gescored. Checkpoints wöchentlich (Normalbetrieb) und täglich (Principal-Abwesenheit). Unter 0.5 oder sinkender Trend über 3 Checkpoints löst Spannungssignal aus.
The 5-Phase Maturity Model
Each phase corresponds to a qualitatively different type of adaptive capacity, grounded in Bateson's (1972) hierarchy of learning types:
Phase 1: Foundation (Bateson Level 0)
AI as a personal productivity tool. Individual agents at L0–L1 produce fixed responses with no experience-based modification. No inter-agent coordination. Principal reviews all outputs.
Transition criteria: 3+ recurring tasks identified; >30% principal time on automatable tasks.
Phase 2: Structured Assistance (Bateson Level I)
Agents adjust operational parameters based on experience, within fixed workflow structures. 5–10 agents at L1–L2. Governance introduces standing and prohibited policies through a basic GaaS layer.
Transition criteria: 5+ workflows at L2; goal accuracy >80%; declining intervention rate over 3+ months.
Phase 3: Managed Autonomy (Level I → II)
Agents begin to modify workflow structures, not merely parameters. 10–30 agents at L2–L3. Full GaaS policy taxonomy, knowledge graph with episodic and semantic layers, RepuNet peer quality assurance.
Transition criteria: 20+ workflows at L2–L3; <5% intervention rate; trust scores driving autonomy; lifecycle management operational.
Phase 4: Adaptive Organization (Bateson Level II)
Agents systematically innovate, transfer capabilities across domains, and create new capabilities without principal specification. 30–100+ agents at L3–L4. Dynamic team formation, strategic agents (S4), internal market mechanisms.
Phase 5: Enterprise / AI-Native (Level II → III)
Approaches the boundary between Learning II and III, where the organization begins to transform its own operating model. Aspirational — no known organization has achieved this as of 2026.
3-Phase Operational Roadmap
- Phase I: The Architect (Months 1–3): Design the system. Build VSM structure, LangGraph backbone, and knowledge graph. L2 agents for core processes. Basic GaaS. Deliverables: Organizational constitution, 3–5 production workflows, Cockpit with basic observability.
- Phase II: The Trainer (Months 4–6): Feedback loops and calibration tests. System prompt refinement. Specialist clusters. KPI framework and trust scores. Deliverables: Performance baselines, trust-score-driven autonomy operational, Knowledge Graph maintained by Gardener.
- Phase III: The Orchestrator (Month 6+): L3/L4 autonomy. Market mechanisms. Strategic agents (S4). >80% principal time on S4/S5 activities. Deliverables: Agents at L3+ for routine operations, strategic agents generating actionable insights.
Failure Modes at Phase Transitions
| Transition | Failure Mode | Symptom | Prevention |
|---|---|---|---|
| 1 → 2 | Premature workflow formalization | Rigid, poor-quality processes | ≥ 10 manual executions before formalizing |
| 2 → 3 | Governance gap | L3 agents without adequate GaaS coverage | 100% policy coverage for agent domain before L3 |
| 2 → 3 | Knowledge graph neglect | No shared organizational memory | Include knowledge graph health in transition criteria |
| 3 → 4 | Insufficient attribution | Multi-agent workflows without outcome attribution | Implement stage-based attribution before Phase 4 |
| 3 → 4 | Over-reliance on principal | Principal remains primary QA mechanism | Require functional RepuNet and peer review before Phase 4 |
Phase Regression & Recovery
Maturity regression is a normal organizational response to disruption, not failure. Three types:
- Model-Change Regression: Major model upgrade causes behavioral drift. Organization temporarily regresses. Recovery: Reduce autonomy to L1–L2, re-run calibration, re-establish baselines. 1–4 weeks.
- Governance-Failure Regression: Significant governance breach. Recovery: Immediately reduce all agents to L1, audit, close governance gap. 2–6 weeks.
- Market-Shift Regression: Fundamental environmental change invalidates workflows. Recovery: Do not reduce autonomy. Update domain strategies, revise workflows, re-train agents on updated context.
VCOM Continuous Improvement Cycle
Unifies cross-dimensional feedback loops into a three-timescale architecture (Argyris, 1991):
- Operational Loop (Per-Task): Automatic, <5% overhead. Assign → Execute → Measure → Evaluate → Record → Feedback.
- Tactical Loop (Bi-weekly): Single-loop learning. Review → Analyze → Diagnose → Plan → Adapt → Capture. Most common invocation point for the Empirical Learning Protocol (Dim 09).
- Strategic Loop (Quarterly): Double-loop learning. Requires principal participation. Environmental Scan → Portfolio Review → Strategy Adjustment → Maturity Assessment → Constitution Review → Roadmap Update.
Autonomous Operation Mode
When the principal is unavailable:
- Strategic Loop: Suspended. No strategy changes. Environmental scanning continues; findings accumulated for return.
- Tactical Loop: Reduced scope. Process improvements within existing structures permitted. Budget reallocation restricted to ±10%.
- Operational Loop: Normal operation within existing constraints.
Conservation Protocol (after day 7 / Yellow→Orange): Risk appetite one level conservative, exploration budgets −50%, all L3+ actions require Manager confirmation.
Self-Reflection Checkpoints (S3 Common Sense Framework)
Meta-level organizational health assessment across ten diagnostic dimensions (Bockelbrink et al., 2022):
- Purpose clarity — shared understanding of organizational purpose
- Strategy coherence — initiatives aligned with Strategic Themes
- Value delivery — outputs serving stated objectives
- Sense-and-respond capability — tensions detected and routed effectively
- Experimentation culture — Empirical Learning Protocol invoked when appropriate
- Autonomy and accountability — appropriate levels with corresponding accountability
- Collaboration effectiveness — cross-agent workflows completing without excessive friction
- Learning orientation — new knowledge captured and applied
- Cultural coherence — behavioral norms consistent with constitution
- Shared mental models — consistent domain assumptions across agents
Each dimension scored 0.0–1.0. Checkpoints run weekly (normal) and daily (principal absence). Below 0.5 or declining trend across 3 checkpoints triggers tension signal.
Maturity Assessment Matrix
Selbstbewertungs-Tool: Pro Dimension wird der aktuelle Reifegrad bestimmt.
Maturity Assessment Matrix
Self-assessment tool: current maturity level determined per dimension.
| DimensionDimension | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 |
|---|---|---|---|---|---|
| OrganisationOrganization | Einzelne AgentenIndividual agents | 5–10 Rollenroles | 10–30, Managermanagers | 30–100+, dynamischdynamic | SelbstorganisierendSelf-organizing |
| Governance | ManuellManual | Basis-PoliciesBasic policies | GaaS operativGaaS operational | L4 + Post-hoc | Self-Auditing |
| ProzesseProcesses | Ad hoc | 3–5 Workflows | 10+ Workflows | SelbstoptimierendSelf-optimizing | SelbstdesignendSelf-designing |
| WissenKnowledge | Principal Memory | Simple KB | Knowledge Graph | GraphRAG | SelbstwartendSelf-maintaining |
| TechnologieTechnology | Chat-Interfaces | LangGraph | Hybrid Stack | Reife InfraMature Infra | Self-Scaling |
| MessungMeasurement | SubjektivSubjective | Basis-KPIsBasic KPIs | Volles FrameworkFull framework | Outcome Attribution | Org-Level-MetrikenOrg-level metrics |
Phase-Transition-Checkliste
Phase Transition Checklist
Transitionskriterien (YAML)Transition Criteria (YAML)
phase_transitions:
phase_1_to_2:
criteria:
- "3+ recurring tasks identified"
- "Principal spending >30% on automatable tasks"
- "Basic agent capability understanding"
gate: "All criteria met"
phase_2_to_3:
criteria:
- "5+ workflows running at L2"
- "Goal accuracy >80%"
- "Human intervention rate declining 3+ months"
- "GaaS layer operational with policy-as-code"
gate: "All criteria met"
failure_check: "If 3+ dimensions lag, transition not recommended"
phase_3_to_4:
criteria:
- "20+ workflows at L2-L3, <5% intervention"
- "Trust score system producing reliable adjustments"
- "Knowledge graph actively used by agents"
- "Agent lifecycle management operational"
- "RepuNet and peer review functional"
gate: "All criteria met"
phase_4_to_5:
criteria:
- "Agents demonstrate L4 strategic judgment"
- "Value generated in non-designed domains"
- "Governance robust through stress tests"
gate: "All criteria met + principal assessment"
note: "Aspirational as of Feb 2026"
Phasengerechte Metriken
Verschiedene Metriken sind in verschiedenen Reifephasen relevant. Phase-4-Metriken in Phase 1 erzeugen nur Rauschen.
Phase-Appropriate Metrics
Different metrics matter at different maturity phases. Tracking Phase 4 metrics during Phase 1 creates noise.
| Phase | PrimärmetrikenPrimary Metrics | Warum dieseWhy These |
|---|---|---|
| Phase 1 | Task Completion, Principal-Zeit gespart, Cost per TaskTask completion, principal time saved, cost per task | Grundnutzen validierenValidating basic utility |
| Phase 2 | Goal Accuracy, Intervention Rate, Workflow Throughput | Workflow-ZuverlässigkeitWorkflow reliability |
| Phase 3 | Trust Score Distribution, Escalation Rate, KG Usage | Autonomer BetriebAutonomous operation |
| Phase 4 | Strategic Drift, Outcome Attribution, Decision-Cycle Latency | Organisationale IntelligenzOrganizational intelligence |
| Phase 5 | Revenue, Customer Satisfaction, Learning Rate | Enterprise-FähigkeitEnterprise capability |
Pull-System für Veränderung
S3-basierter Ansatz (Bockelbrink et al., 2022): Veränderung wird dort eingeführt, wo nachgewiesener Bedarf (Spannung) besteht — nicht top-down als Gesamttransformation:
- Mit einer einzigen Domäne starten: Ein Agent Manifest für den schmerzhaftesten wiederkehrenden Task
- Unter Consent operieren: Algorithmisches Consent-Protokoll validieren
- Fraktal wachsen: Jede neue Domäne ist eigenständig, verbunden durch Double-Linking
- Spannungen treiben Expansion: Neue Domänen als Reaktion auf beobachtete Bedürfnisse, nicht theoretische Vollständigkeit
Pull System for Change
S3-based approach (Bockelbrink et al., 2022): change is introduced where there is demonstrated need (tension) — not pushed top-down as total transformation:
- Start with a single domain: one Agent Manifest for the most painful recurring task
- Operate under consent: validate the Algorithmic Consent protocol works
- Grow fractally: each new domain is self-contained, connected through double-linking
- Let tensions drive expansion: new domains created in response to observed needs, not theoretical completeness
Die Maturity Assessment Matrix ist das zentrale Werkzeug für Beratungsprojekte: Partner nutzen sie, um den IST-Stand eines Kunden zu bewerten, realistische Zielphasen zu definieren und konkrete Transitionsprojekte zu planen. Jede Phase hat klare Deliverables und Erfolgskriterien.
The Maturity Assessment Matrix is the central tool for consulting engagements: partners use it to assess a client's current state, define realistic target phases, and plan concrete transition projects. Each phase has clear deliverables and success criteria.